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We present lattice Boltzmann simulations of flow past a cylindrical obstacle. 
Our study is based on the L6vy walk model of turbulence in a lattice Boltzmann 
model. We discuss pressure around the cylinder with laminar and "turbulent" 
incident flows, as well as the dependence of the von Karman street on the 
analog of integral scale in our model. 
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The lattice Boltzmann (LB) scheme of Chen et a t  C'~ provides a simple 
numerical scheme for the description of  fluid flow. We use this LB scheme 
to investigate laminar flow around a cylinder t2~ and also as a basis for 
modeling the effect of  turbulence in the incident flow. Needless to say, these 
results are obtained within the model we are considering, and are only 
suggestive. They are meant  to elicit experimental t3~ and other theoretical 
work on the subject of  turbulent scales and coherent structures. 

We mimic momen tum transport  by an eddy of size l by exchanging the 
populat ions of  two randomly chosen sites separated by 1, with l chosen 
with a probability p(1) oc 1-1.3 for all results presented here. In agreement 
with the discussion of  Schlesinger et al., ~4~ we associate a waiting time with 
each length l. Since the waiting time is the reciprocal of  the frequency of  
jumps of  a particular length, the distribution of  waiting times is set by the 
dependence o.f the number  of  exchanges N(I)  on l. We use here N(1) oc No - L 

We implement this model in two-dimensional flow past a circular 
obstacle. The obstacle is set into a channel with uniform velocity U at the 
boundaries in the streamwise direction x and periodic boundaries in the 
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transverse y direction, with origin at the center of the obstacle. A more 
precise description of the flow geometry may be found elsewhere/2~ This is 
an extension of our previous study of a L6vy walk-based model of tur- 
bulence in a Boolean implementation of channel flow. tS~ Here, in addition 
to being able to resolve more precisely the velocity field, we are able to 
investigate pressure because of the absence of statistical noise characteristic 
of Boolean approaches. 

There are two basic length scales when the LB model with exchanges 
is used to model cylinder flow with incident turbulence. One is l . . . .  the 
maximum allowed exchange length, which sets a length scale for the tur- 
bulent exchanges. In our model /max plays the role of the integral scale in 
experimental studies. The second length scale in flow past an obstacle is 
just the obstacle diameter D. It is the ratio of these two length scales, which 
is the crucial parameter for investigating the impact of turbulence in flow 
impinging on a cylinder. 

One difficulty in finding pressure at a surface in the LB method not 
present with finite-difference methods is that a perfectly circular obstacle 
cannot be created on a regular lattice with no-slip boundary conditions. 
The edges of an approximation to a circle on a lattice are jagged, which 
produces discernible effects in the flow very near the obstacle. Evaluating 
the pressure at the surface of the obstacle does not yield a smooth p(O). 
This is a difficulty which cannot be resolved by interpolating, but is due to 
the perturbation of the flow by a polygonal obstacle. It is necessary to 
evaluate the pressure several sites (roughly a mean free path) away from 
the surface of the obstacle to obtain a curve that does not show discon- 
tinuities due to the lattice. Doing so introduces appreciable error both at 
the leading edge of the obstacle and at the angle of minimum pressure, t2) 
Results presented in the inset to Fig. 6 are thus for pressure evaluated four 
lattice sites away from the surface of the obstacle. 

The pressure in laminar flow as calculated in the LB scheme without 
exchanges agrees with experimental 16,7~ and finite-difference studies/s'9) 
A succinct measure of the accuracy of our laminar solution is the Strouhal 
number S t=D/rU,  where r is the period of the oscillation in drag, or, 
equivalently, in v(x, 0); we find St=0.162,  as compared to St=0.153 for 
the experimental results/7~ an error of 6%. This figure may be compared 
with errors for St of ~< 3.5 % in the exacting numerical study of Abarbanel 
et al. t9) 

Figures 1 and 2 show the pressure field without and with exchanges, 
respectively, at a mean-flow Re of 76.8. The symmetric pressure field shown 
in Fig. 3 suggests that in this case the von Karman street is destroyed by 
incident turbulence. This is easily verified by inspecting the dependence of 
v(3.5D, 0), the component of the velocity perpendicular to the mean flow 
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Fig. 1. Contour plot of dimensionless pressure at R e = 7 6 . 8 .  Dotted line is p = Pmr, with 
each contour representing a step of 0.1p'. 
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Contour plot of  dimensionless pressure at R e  = 76.8 with L~vy model of incident 
turbulence; l u  = 7D,  contour lines defined as for Fig. 2. 
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at a position 3.5 diameters downstream of  the obstacle's center, on /max, 
which is shown in Fig. 3. The inset shows how the time series of  v(3.5D, 0) 
changes character with increasing exchange length; the intermittent inter- 
vals of  regular oscillation in the velocity become rarer with increasing 
exchange length. 

An examination of  u, the streamwise velocity, suggests a simple 
explanation for why the exchanges suppress the von Karman  street. The 
wake length L is the distance upstream from the obstacle center where u at 
y = 0 becomes positive. The wake behind the obstacle is much shorter with 
incident turbulence as modeled by Levy distributed exchanges ( L =  1.1D) 
than without ( L = 2 . 6 D ) .  Both the shortened wake and the absence of  
vortex shedding are explained by the effect of  the enhanced momentum 
transport  provided by the L6vy distributed exchanges. The exchanges (and 
the eddies which they model) t ransport  momentum between the slowly 
moving fluid behind the obstacle and the fast-moving fluid to either side. 
The net effect is to accelerate the fluid behind the obstacle, thus shortening 
the wake. The same mechanism of enhanced momentum transport  affects 
the region immediately behind the obstacle, where vortices form before 
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Fig. 3. Peak transverse velocity measured at a station 3.5 diameters downstream from the 
obstacle center, v(3.5D, 0), plotted against maximum exchange length. Inset shows time series 
of v(3.5D, 0) for lm,,,=2D (dots) and 3D (line) showing the intermittency of the periodic 
oscillations. 
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they are shed in the absence of turbulence. Sufficiently many exchanges 
between a nascent vortex and any other region in the flow suppress the for- 
mation of the vortex, and thus there can be no vortex street. Bearman, in 
his experimental study on the effects of incident turbulence on flow around 
fiat plates at much higher mean-flow Re, ca) also states that the main effect 
of turbulence in the incident flow is on the exchange of momentum between 
flow inside and outside of the wake. 

The result that at sufficiently large lmax/D the von Karman street is 
destroyed is not readily seen by spectral analysis, but is confirmed by an 
examination of spatial correlation in the flow. Figure 4 shows that the 
power spectrum of the time series of v(3.5D, 0), v(w) v*(w), retains a peak 
near the Strouhal frequency even with /max = 7D, though the velocity 
oscillations are so small for l.~ax >/3D that they do not seem to be due to 
translating vortices. To confirm that the persistent peak is not due to 
vortex shedding, we note that without L6vy exchanges, vortices produce 
strong spatial correlations in the velocity field which persist far down- 
stream from the obstacle, and that these spatial correlations are feeble and 
localized for sufficiently large lmax/D. In particular, the quantity c(x)= 
< Av(x, O) Av(x, D/2)>, with Av(x, y) = v(x, y) - ~(x, y), varies very slowly 
with x in laminar flow, as may be seen in Fig. 5. This is because vortices 
retain their coherent structure as they are convected away from the 
obstacle. For /max >/3D, however, the correlation falls off sharply with 
increasing distance from the obstacle, and is weak even immediately 
downstream from the obstacle. If the correlation in velocities arose as a 
consequence of spatially coherent vortices being convected upstream, the 
correlation should change only as the vortices diffuse away. The transverse 
velocity does not show such a slowly changing correlation with long 
exchanges--it is larger in magnitude near the obstacle and shows a 
stronger spatial correlation there also. Such behavior might be due to 
oscillation of the vestigial wake. An experimental study "~ performed in 
turbulent shear flow past a cylinder at lower mean flow Re than Bearman's 
investigation supports the qualitative conclusion that turbulence with a 
large integral scale disrupts vortex shedding. 

The effect of the momentum exchanges on the velocity field provides a 
ready interpretation for the changes in the pressure near the obstacle, shown 
in an inset to Fig. 6. The pressure behind the obstacle is smaller with tur- 
bulence than  without, and the pressure in front is larger. The smaller 
pressure behind the obstacle is a consequence of the weaker backflow in the 
wake, that is, of the enhanced momentum exchange between the wake and 
its surroundings. Similarly, exchanges tend to reduce v upstream from the 
obstacle, thus raising the pressure there. We have checked that the pressure 
with exchanges shown in the inset to Fig. 6 is insensitive to the form of N(/). 
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Fig. 4. Power spectra of 0(3.5D, 0) for /max = 2 D  (solid line), 3D (dashed line), 5D (dash- 
dotted line), and 7D (dotted line). All curves have been rescaled to have similar maxima. 
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Fig. 5. Correlations in v at two positions downstream from the obstacle. The change from 
strong correlation weakly dependent on distance from the obstacle to rapidly falling-off weak 
correlation indicates that the peak near the Strouhal frequency in Fig. 4 is not due to vortex 
shedding. 
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Fig. 6. Drag plotted as a function of Ima,,/D. The upper inset shows time series of the drag 
in laminar flow at Re= 76.8 and for flow with incident turbulence with lma. = D. Even the 
weakest turbulence, which still leaves the yon Karman street intact, is strong enough to mask 
the small-amplitude oscillations the drag undergoes as vortices are shed. The lower inset is 
pressure as a function of angle in laminar flow (solid line) and with incident turbulence with 
Ira, x = 7D (dash-dotted line). 

The drag, shown in Fig. 6 as a function of  lmax/D, reflects these 
changes in the pressure. For  small l, the drag reflects the suppression of  
the vortex street and the enhanced transport  of  momentum by the L~vy 
distributed exchanges. Once lmax/D becomes large enough, increasing the 
size of  the largest exchanges is no longer significant, so the change in 
drag only reflects the slow increase in the probability of  long exchanges 
with further increases in /max" Exactly how large depends on the choice of  
N(l). Our  results for how turbulence in the incident flow affects pressure 
and drag a re , in  qualitative agreement with Bearman's results for flat 
plates. ~3~ 

To conclude, we have implemented a L6vy walk-based model for tur- 
bulent flow incident on a cylinder (in two dimensions) and found that the 
regular vortex structure is greatly perturbed by the t ransport  of  fluid in 
and out of  the wake when the integral scale of  turbulence is large enough 
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compared to the cylinder diameter. Results on changes in drag and 
pressure due to incident turbulence are in qualitative agreement with 
experimental results obtained at very high Reynolds number. 
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